Systemic Chemical Desensitization of Peptidergic Sensory Neurons with Resiniferatoxin Inhibits Experimental Periodontitis

نویسندگان

  • Torbjørn Breivik
  • Yngvar Gundersen
  • Per Gjermo
  • Inge Fristad
  • Per Kristian Opstad
چکیده

BACKGROUND AND OBJECTIVE The immune system is an important player in the pathophysiology of periodontitis. The brain controls immune responses via neural and hormonal pathways, and brain-neuro-endocrine dysregulation may be a central determinant for pathogenesis. Our current knowledge also emphasizes the central role of sensory nerves. In line with this, we wanted to investigate how desensitization of peptidergic sensory neurons influences the progression of ligature-induced periodontitis, and, furthermore, how selected cytokine and stress hormone responses to Gram-negative bacterial lipopolysaccharide (LPS) stimulation are affected. MATERIAL AND METHODS Resiniferatoxin (RTX; 50 μg/kg) or vehicle was injected subcutaneously on days 1, 2, and 3 in stress high responding and periodontitis-susceptible Fischer 344 rats. Periodontitis was induced 2 days thereafter. Progression of the disease was assessed after the ligatures had been in place for 20 days. Two h before decapitation all rats received LPS (150 μg/kg i.p.) to induce a robust immune and stress response. RESULTS Desensitization with RTX significantly reduced bone loss as measured by digital X-rays. LPS provoked a significantly higher increase in serum levels of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α, but lower serum levels of the anti-inflammatory cytokine interleukin (IL)-10 and the stress hormone corticosterone. CONCLUSIONS In this model RTX-induced chemical desensitization of sensory peptidergic neurons attenuated ligature-induced periodontitis and promoted a shift towards stronger pro-inflammatory cytokine and weaker stress hormone responses to LPS. The results may partly be explained by the attenuated transmission of immuno-inflammatory signals to the brain. In turn, this may weaken the anti-inflammatory brain-derived pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel.

Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) c...

متن کامل

Differential activation and desensitization of sensory neurons by resiniferatoxin.

Recently, with use of rat dorsal root ganglion (DRG) neurons we have been able to dissociate the binding affinities of vanilloids from their potencies to induce 45Ca uptake, which suggests the existence of distinct classes of the vanilloid receptor (). In the present study, we have demonstrated that the ultrapotent capsaicin analog resiniferatoxin (RTX) desensitized rat DRG neurons to the subse...

متن کامل

Vanilloid (capsaicin) receptors in health and disease.

The cloned vanilloid (capsaicin) receptor subtype 1 (VR1) integrates multiple noxious stimuli on peripheral terminals of primary sensory neurons. The initial excitation of these neurons is followed by a lasting refractory state, traditionally termed desensitization, that has clear therapeutic potential. Capsaicin is used to relieve neuropathic pain, uremic pruritus, and bladder overactivity. Th...

متن کامل

Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans.

Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α(2)-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of no...

متن کامل

Characterization of functional vanilloid receptors expressed by mast cells.

Capsaicin and its ultrapotent analog resiniferatoxin (RTX) act through specific vanilloid receptors on sensory neurons. The C-type receptor is coupled to 45Ca uptake, whereas the R-type is detectable by [3H]RTX binding. We describe here specific vanilloid responses in murine mast cells (MCs). In the MC lines and in bone marrow-derived mast cells, capsaicin and RTX induced 45Ca uptake similarly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011